skip to main content


Search for: All records

Creators/Authors contains: "Tucker, Clay S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We describe the utility of false rings inTaxodium distichum(i.e. baldcypress) as a proxy for hydroclimatic extreme events in three different river basins (Pascagoula, Mobile, and Choctawhatchee) that discharge into the northern Gulf of Mexico. False rings occur as a result of a change in the environmental limiting resource for tree stem growth, and inT. distichum, false ring production is usually a result of increases in mid-growing season water availability. Our results show that false ring occurrence (from 1931 to 2018) is similar across sites but occur in different years, suggesting that false ring production is indicative of tree response to its local environment. False ring production inT. distichumhas previously been correlated with summer streamflow, the season when tropical cyclone precipitation (TCP) is highest. To assess a stand-wide response, we define high false ring (HFR) years as all years when20% of trees produced a false ring. We show total TCP in July is the best predictor for HFR years inT. distichum, and false ring production in smaller river basins captures local TCP better than larger river basins. Additionally, HFR years coincide with summers of anomalously high precipitation, anomalously low temperatures, and a positive phase of the North Atlantic Oscillation. 77% of HFR years occur in seasons when there is heavy tropical cyclone activity near sample sites, building a foundation to use false ring records as robust TCP proxies with hydroclimate reconstruction potential.

     
    more » « less
  2. Despite growing in wet lowland and riparian settings, Taxodium distichum (L.) Rich. (bald cypress) has a strong response to hydroclimate variability, and tree ring chronologies derived from bald cypress have been used extensively to reconstruct drought, precipitation and streamflow. Previous studies have also demonstrated that false rings in bald cypress appear to be the result of variations in water availability during the growing season. In this study 28 trees from two sites located adjacent to the Choctawhatchee River in Northwestern Florida, USA were used to develop a false ring record extending from 1881 to 2014. Twenty false ring events were recorded during the available instrumental era (1931–2014). This record was compared with daily and monthly streamflow data from a nearby gage. All 20 of the false-ring events recorded during the instrumental period occurred during years in which greatly increased streamflow occurred late in the growing season. Many of these wet events appear to be the result of rainfall resulting from landfalling tropical cyclones. We also found that the intra-annual position of false rings within growth rings reflects streamflow variability and combining the false-ring record with tree ring width chronologies improves the estimation of overall summer streamflow by 14%. Future work using these and other quantitative approaches for the identification and measurement of false ring variables in tree rings may improve tree-ring reconstructions of streamflow and potentially the record of tropical cyclone rainfall events. 
    more » « less
  3. Abstract

    Since 2013, extreme floods within the Santee River basin (North/South Carolina, USA) caused $1.5B in damage. The instrumental period, however, is too short to determine if recent extreme events are anomalous within a long‐term context. Here, we present reconstructions of storm‐, base‐, and total streamflow for the Santee River using a multi‐species tree‐ring network calibrated to flow data during the period 1923–2018. Tree‐ring data explained higher variance (r = 0.59;p < 0.01; 900–2018) of instrumental baseflow than total streamflow (r = 0.41;p < 0.01; 1500–2018) or stormflow (r = 0.26;p < 0.05; 1690–2018). Our reconstruction reveals a long‐term increase in baseflow over the past millennium. The North Atlantic subtropical high regulates baseflow in the Santee River (r = 0.45;p < 0.01). Recent high levels of baseflow may be connected to the position of the subtropical high, increasing the likelihood of flooding.

     
    more » « less
  4. The longleaf pine ( Pinus palustris Mill.) and related ecosystem is an icon of the southeastern United States (US). Once covering an estimated 37 million ha from Texas to Florida to Virginia, the near-extirpation of, and subsequent restoration efforts for, the species has been well-documented over the past ca. 100 years. Although longleaf pine is one of the longest-lived tree species in the southeastern US—with documented ages of over 400 years—its use has not been reviewed in the field of dendrochronology. In this paper, we review the utility of longleaf pine tree-ring data within the applications of four primary, topical research areas: climatology and paleoclimate reconstruction, fire history, ecology, and archeology/cultural studies. Further, we highlight knowledge gaps in these topical areas, for which we introduce the Longleaf Tree-Ring Network (LTRN). The overarching purpose of the LTRN is to coalesce partners and data to expand the scientific use of longleaf pine tree-ring data across the southeastern US. As a first example of LTRN analytics, we show that the development of seasonwood chronologies (earlywood width, latewood width, and total width) enhances the utility of longleaf pine tree-ring data, indicating the value of these seasonwood metrics for future studies. We find that at 21 sites distributed across the species’ range, latewood width chronologies outperform both their earlywood and total width counterparts in mean correlation coefficient (RBAR = 0.55, 0.46, 0.52, respectively). Strategic plans for increasing the utility of longleaf pine dendrochronology in the southeastern US include [1] saving remnant material ( e.g., stumps, logs, and building construction timbers) from decay, extraction, and fire consumption to help extend tree-ring records, and [2] developing new chronologies in LTRN spatial gaps to facilitate broad-scale analyses of longleaf pine ecosystems within the context of the topical groups presented.

     
    more » « less